

CABLE DISPLACEMENT SENSOR

CD50

APPLICATIONS

- CD50 sensores are cable displacement sensors. They are used to measure (in absolute or incremental mode) the displacement of a mobile object from its datum.
- Injection moulding machines.
- Forging machines and bending machines.
- Material testing machines.

DESCRIPTION

A linear CD50 works according to the principle of a thread taut between a mobile element and a fixed element, fitted with a return spring drum. The drum then converts the linear displacement into an angle displacement. The shaft of the drum is fitted with a potentiometer, and operates an incremental encoder or an absolute encoder.

CABLE DISPLACEMENT SENSOR

CD50

CD50 POTENTIONMETRIC OUTPUT – Measurement range 0 up to 1250 MM

TECHNICAL FEATURES

Measurement Range	0 up to 1250 mm		
Output signal	$1k\Omega$ Potentiometer (other values on demand)		
Resolution	Quasi infinite (depends on the operating system)		
Material	Body and cover – aluminum (Roh\$)		
	Measuring cable – inox 316L		
Cable diameter	0,51 mm		
Detection element	Multi-turn Hybrid potentiometer		
Connection	Male connector M16 – DIN 3 pin		
	Male connector M12 – 4 pin		
	PVC cable – 4 wires		
Standard linearity	+/- 0,25% PE – stroke ≤500 mm		
	+/- 0,15% PE – stroke >500 mm		
	+/- 0,10% PE – stroke >500 mm		
Protection class	IP54 (option IP67)		
Max.Velocity	10 M/S		
Max. Acceleration	40M/S ² (before cable deformation)		
Weight	≈ 700 g		
Operating temperature	-20° to +80 °C		
Storage temperature	-30° to +80°C		

CABLE FORCES

Measurement range in mm	Min. pull-out force	Max. pull-out force	
50	= 6,40 N	= 6,50 N	
100	= 6,30 N	= 6,50 N	
250	= 6,00 N	= 6,50 N	
500	= 5,50 N	= 6,50 N	
750	= 5,00 N	= 6,50 N	
1000	= 4,50 N	= 6,50 N	
1200	= 4,00 N	= 6,50 N	
1250	= 4,00 N	= 6,50 N	

CABLE DISPLACEMENT SENSOR

CD50

ORDERING REFERENCE

Reference example: CD50-0750-U010-L15-K02-OP-AC-EM

CABLE DISPLACEMENT SENSOR

CD50

ELECTRICAL FEATURES

 $\underline{\textbf{Potentiometric version 1 K} \Omega:} \ (\text{other values on demand})$

.....+/-50 ppm/*C Temperature drift

Example of wiring diagram with input stage :

To ensure a good linearity, wire the potentiometer as a voltage divider and never as a rheostat. The input resistance of the operating system must be very high (greater than 10M Ω)

CONNECTION

Male connector M16 3 pin (DIN)	Male connector M121 4 pin	PVC cable 4 wire	R01K
1	1	Brown	Input voltage +
5	2	White	Input voltage GDN
3	3	Green	Signal +
Sensor side view	Sensor side view		

CABLE DISPLACEMENT SENSOR

CD50

DIMENSIONAL DRAWING

CABLE DISPLACEMENT SENSOR

CD50

OPTIONS

Cable attachment with a lug:

Standard

The attachment lug is fixed with a M6 screw or a clevis.

Cable attachment with a clip:

OP-EM

This fastening system allows a rotation about its axis.

The clip is fixed with a M4 screw or a clevis.

Cable attachment with a M4 threaded rod:

OP-M4

The rod attachment uses a threaded rod with 2 nuts (provided). The required thickness of the plate does not exceed 5 mm.

Caution

Never screw the threaded rod into a fixed nut, a twist of the measurement cable would damage it.

Cable attachment with a clevis:

OP-CP

The attachment of the clevis is done using a pin (provided).

Cable dust wiper:

OP-RAC

The dust wiper cleans the cable in dusty or humid environments.

Water evacuation holes:

OP-TEV

The holes allow the natural flow of fluids out of the sensor in order to avoid their accumulation in the system.

